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Abstract

BACKGROUND: With the use of artificial intelligence and machine learning techniques for 

biomedical informatics, security and privacy concerns over the data and subject identities have 

also become an important issue and essential research topic. Without intentional safeguards, 
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machine learning models may find patterns and features to improve task performance that are 

associated with private personal information.

OBJECTIVE: The privacy vulnerability of deep learning models for information extraction from 

medical textural contents needs to be quantified since the models are exposed to private health 

information and personally identifiable information. The objective of the study is to quantify the 

privacy vulnerability of the deep learning models for natural language processing and explore a 

proper way of securing patients’ information to mitigate confidentiality breaches.

METHODS: The target model is the multi-task convolutional neural network for information 

extraction from cancer pathology reports, where the data for training the model are from the 

participated multiple state cancer registries. This study proposes the following schemes to collect 

vocabularies from the cancer pathology reports; (a) words appearing in multiple registries, and (b) 

words that have higher mutual information. We performed membership inference attacks on the 

models in high-performance computing environments.

RESULTS: The comparison outcomes suggest that the proposed vocabulary selection methods 

resulted in lower privacy vulnerability while maintaining the same level of clinical task 

performance.

Keywords

privacy; privacy-preserving training; deep learning; natural language processing; cancer 
epidemiology; artificial intelligence

1 Introduction

Artificial intelligence (AI) and machine learning (ML)-based automatic information 

extraction from natural language texts is an actively researched and developed topic because 

such tasks are massively labor-intensive, costly, and error-prone [1][2]. Recent advances 

in deep learning (DL) have improved accuracy and reduced the burden of model training. 

One of the major advances of DL is that optimal features for prediction are constructed in 

the model building process, and manual curation of features is not needed. However, that 

desirable property of self-feature representation also poses the risk that information from 

the training dataset, either common or private, will be exposed or leaked [3][4]. Since DL 

models are agnostic to the nature of the information they contain, they cannot distinguish 

which portion of training data is open information or private information.

Open information is information that appears across the data samples in the corpus, some 

of which may contain key features that are correlated with the outcome and thus can be 

used in a classification model with robust performance beyond the dataset on which the 

model was trained. Private information, on the other hand, is highly specific to an individual 

observation, and includes but is not limited to some proper nouns or unique combinations of 

common information. In our application, we desire a model that maintains high predictive 

performance when transferred from a training set to a real-world production environment. 

Specifically, in the context of extracting information from a cancer pathology report 

corpus, we have developed the multi-task convolutional neural network (MT-CNN) model 

to identify primary cancer sites and their properties from unstructured text in pathology 
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reports and both types of information are present in the training set [5]. The training data 

includes open information such as words and phrases with characteristics of primary cancer 

sites (e.g., breast cancer, HER2) or histology (e.g., adenocarcinoma). Nevertheless, if some 

of the words and phrases are related to individual patients (e.g., name or HIPAA PHI) or 

the specific name of the pathology laboratory, they are private information. Such private 

information is not useful in the model as it is unlikely to generalize to predictions on new 

corpora and, thus, should not be contributed to the information extraction tasks. However, 

there is a possibility that a ML/DL training algorithm will leverage private information to 

increase its accuracy. The process by which ML/DL training leverages private information 

to boost classification accuracy is called “overfitting.” Overfitting is observed when the 

accuracy of the training data is much larger than the prediction accuracy of the test data. 

Thus, overfitting increases accuracy on training samples; but it does not improve the 

accuracy of test data samples that have not been exposed to the model and may make it 

worse by decreasing generalization of the features. Although there are several techniques to 

avoid overfitting, there is no guarantee that private information will not be used as a signal in 

model predictions.

The underlying security vulnerability can be articulated as the hypothesis that the model 

may make confident decisions on samples already exposed for training but it is less 

confident with regard to testing samples. In other words, DL models behave differently with 

respect to training data compared with data they have not seen. In generic DL models, those 

kinds of confidence and uncertainty can be obtained from the softmax layer output. By using 

distributions of softmax output from the model established based on the training samples 

(prior distributions), as well as distributions of output based on samples that have never 

been exposed to the model (posterior distributions), we can estimate the membership and 

association of the samples. This process is called a “membership inference attack” (MIA). 

However, it is impossible to obtain posterior distributions without the training samples; and 

if the entire set of training samples is available, then such attacks are not even needed. 

Shokri et al. [3] introduced a novel method of estimating such posterior distributions from a 

shadow model with a training dataset that possesses similar properties to those of the target 

model. We applied the Shokri's approach to a cancer pathology report corpus. The algorithm 

estimates the posterior distribution of the association of data samples by using multiple 

shadow models. With simulated adversarial attacks, we can quantify how vulnerable any 

ML/DL model is to MIAs.

One intuitive way to avoid overfitting DL models for text data comprehension is to eliminate 

the non-informative words and tokens from the vocabulary set. The problem is, there are 

no straightforward methods for doing it. To address this gap, in this study, we proposed 

two approaches for optimal vocabulary selection. We, then, experimentally validated the 

effectiveness of the proposed approaches to the DL models for text comprehension and 

information extraction from cancer pathology reports provided by the seven participating 

cancer registries. Finally, we quantified the privacy vulnerability with the MIA accuracy 

scores as well as the clinical task performance scores.

This paper is organized as follows: In Section 2 we discuss related work and describe the 

research problem. In Section 3, we present the methods, i.e., the brief of MIA algorithm, 
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the cancer pathology report datasets, a target MT-CNN model used to perform the privacy 

attacks, proposed vocabulary selection approaches, and the study design with details of the 

simulation experiments and defined metrics. In Section 4 we present the results of this study. 

Finally, in Section 5 and 6 we present the discussion and conclusion.

2 Privacy Attacks toward Machine Learning Models Related Work

Homer et al. [6] studied MIAs statistically to estimate the probability that a particular 

record was part of a dataset; they documented attacks on the privacy of biological data. 

They demonstrated that it is possible to identify whether an individual participated in 

a study by knowing parts of the individual's genome and the summary statics of the 

genome-based study. More recent studies have been published by Dwork et al. [7] and 

Backes et al. [8]. Dwork's research question focused on estimating how many adaptive 

chosen statistical queries can be correctly answered using samples from a distribution [7]. 

Backes demonstrated that MIAs also threaten the privacy of individuals who contribute their 

microRNA expressions to scientific studies using disease-specific datasets by relying only 

on published mean statistics [8]. In their suggested solution approaches, both Dwork and 

Backes used differential privacy [9] to decrease the probability of MIAs.

In [3], Shokri et al. studied MIA for ML as the attempt to discern the data in a query as part 

of the training dataset; i.e., to use the model to learn whether a particular record was part of 

the training data or not. ML presents what is known as a “black box setting”. That is, none 

of the following are available: knowledge of the model parameters, or direct knowledge 

access to the algorithm's implementation, or knowledge of the data distribution, or all of the 

features in the dataset and/or the trained data. Thus, how can attackers perform an MIA? 

They can do so by using the intuition of overfitting, knowing that ML behaves differently 

with respect to the training data compared with data that the model has not seen.

Shokri et al. initiated their approach's description with the usual, normal behavior in ML 

models: first, a query is submitted from the training set to the prediction API, and then a 

classification result vector R1 is received. Suppose an input that is NOT from the training 

set, but from outside the training set, can be submitted to the prediction API; in that case, 

another classification result vector, R2, will be received. A would-be attacker would need 

only to identify the difference between the two resulting classification responses: R1 and 

R2. ML is used to identify these differences; thus, an ML model can be trained to recognize 

the difference, which is known as an “attack model”. The attack model is basically a binary 

classifier: it observes a prediction vector and outputs the probability that this prediction 

vector is coming from the members versus the nonmembers.

The main question that Shokri's work answered is how to train an attack model without 

access to the training data. Shokri asserts that the main goal of an attack model is to learn the 

behavior of the target model with respect to training data, and compare it with the behavior 

it exhibits toward data from outside the training set. The way to train the attack model 

without access to the training set is to learn the behavior not from the target model, but from 

other models that Shokri called “shadow models'”. Assuming that the architecture of the 

target model is known, and that the attacker has some data that are in the same underlying 
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distribution as the training data of the target model, then other models, the shadow models, 

can be trained. The “attack model” can be trained on the predictions that these shadow 

models produce on their training data versus their test data. Consequently, if the architecture 

of a shadow model is of the same type as the architecture of the target model, and if the 

data used to train the shadow model are similar to the data used to train the target model 

(although with different parameters), then the shadow model will behave similarly to the 

target model with regard to the respective sets of testing and training data.

Other approaches have been used to study and prevent MIAs. In [10], Li et al. presented an 

adversarial training framework, the “Deepobfuscator”, that prevented extracted features from 

being used to reconstruct raw images and infer private attributes, while the common data 

were used to train for image classification. In [11], Wang et al. proposed a sparse method 

based on single value decomposition to decrease parameters in CNNs to compress remote 

sensing images and thus protect from attacks against privacy. Chamikara et al. presented 

“PABIDOT” in [12], a nonreversible perturbation algorithm for privacy preservation of 

big data which uses optimal geometric transformations. Hao et al. [13] proposed a privacy-

enhanced federated learning scheme for industrial AI. Shen et al. [14] proposed a morphed 

learning (MoLe) approach to deliver DL data efficiently and securely. Jia et al. [15] 

proposed “MemGuard,” which incorporates a noise vector to a confidence score vector 

to turn it into an adversarial example that misleads the attacker's classifier. Chen et al. 

[16] proposed an MIA that leverages different outputs of an ML model by introducing the 

concept of machine unlearning, i.e., removal of requested data from the training data set 

by the ML model owner. His work indicated that ML can have counterproductive effects 

on privacy. Song et al. [17] proposed to benchmark membership inference privacy risks 

by improving existing non-neural network-based inference attacks and proposed a new 

inference attack method based on a modification of prediction entropy. They also proposed 

benchmarks for defense mechanisms by accounting for adaptive adversaries with knowledge 

of the defense, and accounting for the trade-off between model accuracy and privacy risks. 

Song's benchmark attacks demonstrated that existing defense approaches are not as effective 

as had previously been reported. Song introduced a new approach to fine-grained privacy 

analysis by formulating and deriving a new metric called “privacy risk score” that measures 

an individual sample's likelihood of being a training member.

Compliance with privacy regulations to prevent attacks has also gained interest and many 

approaches have been developed to suggest solutions [18-24]. Challenges and opportunities 

for genomics data sharing is explored in [25]. Abouelmehdi et al. surveyed security and 

privacy challenges in big data applied to healthcare [26] by Bonomi et al. Legal and ethical 

challenges to patient privacy in big data were explored in [27][28].

3 Methods

3.1. Membership Inference Attacks

The objective of MIA is to estimate if a certain data sample is associated with the training 

dataset. In the information extraction model for cancer pathology reports case, by using 

this kind of attack, we can identify whether a particular person is a cancer patient/survivor, 
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which is a disclosure of very private health information and a serious lack of conformance 

with privacy policies.

However, the ML/DL model is a kind of black box (i.e., the model is not designed to expose 

the details of the inference process). To estimate the prior (identify whether a particular 

person is a cancer patient/survivor) from the posterior (inference output of the black box), a 

pair of the training corpus (the e-path reports for training the model) and its model outputs 

are required, which is not available for most cases.

The privacy attack model [3] is based upon the assumption that the posterior distribution can 

be estimated from a series of models trained by the same hyper-parameters and by another 

set of training samples that may have a similar distribution to the training samples in the 

model to be attacked. We applied the following definitions and MIA approach:

1. Mtarget is the model that we were attempting to attack.

2. The attack attempts were trained by the set of training samples xtarget.

3. In addition, we developed a series of shadow models, Msℎadow
i , i = 1 … N, that 

resemble the target model, where N is the number of shadow models.

4. For a give data corpus, which had a similar distribution to the one for the 

target model, xshadow, we provided N sets of training samples (shadow prior) to 

produce inferences (shadow posterior), yshadow.

5. A variety of methods could be used to prepare the shadow dataset. In this study, 

we chose to apply a 50/50 random split to xshadow; thus xsℎadow
i, in  and xsℎadow

i, out .

6. Then we trained the model, Msℎadow
i , only with xsℎadow

i, in , and collected the 

inferences from the model, ysℎadow
i, in, c , ysℎadow

i, out, c , c = 1 … C where C, is the number 

of classes in the dataset.

7. Finally, we developed an attack model, Mattack
c , for a given ysℎadow

i, in, c  and ysℎadow
i, out, c , 

for ∀i = 1 … N, in which we assigned the truth label, either 0 to ysℎadow
i, out, c  or 1 to 

ysℎadow
i, in, c .

8. C is the number of attack models that committed membership inference attacks.

3.2. Dataset

The dataset for this study consisted of unstructured text in pathology reports from the 

following seven cancer registries: the California Cancer Registry (CCR), Kentucky Cancer 

Registry (KCR), Louisiana Tumor Registry (LTR), New Jersey State Cancer Registry 

(NJSCR), New Mexico Tumor Registry (NMTR), Seattle Cancer Registry (SCR), and Utah 

Cancer Registry (UCR). These registries are participants in the National Cancer Institute 

(NCI) SEER program. The study was executed in accordance with the institutional review 

board protocol DOE000619, approved by Central DOR Institutional Review Board on April 

6, 2021 (initial approval on September 23, 2016).
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We determined truth labels of the cancer pathology reports based on the Cancer/Tumor/Case 

(CTC) database, which stores all diagnostic, staging, and treatment data for reportable 

neoplasms in the SEER Data Management System (SEER*DMS). We consider the 

International Classification of Diseases for Oncology [29], Third Edition (ICD-O-3) coding 

convention for labeling the cases. The following 5 data fields and number of classes were 

used for the model: (1) cancer site (70 classes), (2) subsite (326 classes), (3) laterality (7 

classes), (4) behavior (4 classes), and (5) histology (639 classes).

3.3. MT-CNN Model

The target model on which we launched an MIA is toward the MT-CNN model [5], which 

is an extension of a CNN model for text classification [30] with additive multi-task fully-

connected layers at the end. Training and optimization were based upon the gradient for 

each task. The summation of the validation loss determined the termination of the training 

from the dataset, for which we reserved 10% of the training samples. Here is the potential 

possibility of the model overfitting; not every task is equally easy or complicated. For 

example, the histology task had more than 500 class labels, while the behavior task had 

fewer than 10 labels. Also, there were some class labels with abundant training samples and 

some others with very few, mainly because of rare cancer types and histologies. Minor class 

labels made the MT-CNN model more complicated to train, degraded the task performance 

scores, and caused overfitting to the minor classes. Overfitting is well-known that it could 

cause privacy vulnerability thus subject to MIA.

3.4. Optimal Vocabulary Selections for Privacy-Preserving DL Model Training

The intrinsic idea of the privacy-preserving model training for natural language text 

comprehension is to identify which words are useful to the clinical tasks we are interested in 

and which are not, then employ the useful words as the model's vocabulary. The reasoning 

behind the idea is based on the understanding that the words that may contain personally 

identifiable information (PII) and protected health information (PHI) are not helpful to 

the clinical tasks. Even worse, those non-informative words may incur overfitting if those 

keywords are involved in the classification tasks.

Our previous study [31] trained the MT-CNN model with the vocabulary limited to the 

words and tokens that appeared only in the description field of the concept unique identifiers 

(CUIs) in the unified medical language systems (UMLS). It is based upon the assumption 

that such text corpus should not include any patient-specific keywords (e.g., patients' 

names). However, there is no such guarantee that the UMLS vocabulary only contains 

keywords and tokens for open information, the possibility of privacy leakage persists.

In this study, we propose the following two approaches of eliminating the private 

information by identifying non-informative keywords in the model training.

3.4.1. Words appearing across multiple cancer registries - Intersection 
approach—The underlying hypothesis is that if the words appear across the multiple 

cancer registries, those may represent a commonality, information, and characteristics that 

describe what the cancer pathology reports should possess. On the contrary, if any of the 
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keywords are utilized only by a specific cancer registry, such words may have limited 

knowledge or no information on the clinical tasks.

We performed the training of MT-CNN models with keywords that have S(word) ≥ 

Sthreshold, and discard S(word) < Sthreshold, where S(word) is the number of registries that 

the keyword word is appearing. Note that, technically, Sthreshold cannot be greater than the 

number of cancer registries in the training set. Therefore, in our experiments, max(Sthreshold) 

= 6. Consequently, the total number of keywords in the vocabulary set is subject to the 

Sthreshold. For a given set of training corpus, it is evident the vocabulary size is decreased if 

Sthreshold increased.

Observations we are interested in would be if the MT-CNN model with the vocabulary with 

higher Sthreshold

1. Maintains the same clinical task scores?

2. Reduces privacy vulnerability in MIA accuracy?

3.4.2. Words possess useful information for the given clinical tasks – Mutual 
information approach—The first strategy is simple and intuitive. However, it is 

applicable only if the data corpus was composed by the subset of data from multiple data 

sources, and the properties of the subset of data should be identical (i.e., multiple cancer 

registries in our study). As a counterpart, we propose a measure of the usefulness of the 

keywords based on the mutual information (MI).

In this study, we calculated MI by treating each keyword and class label as a binary random 

variable (present, or not present). For a given keyword and class combination, the MI was 

normalized according to the entropy of the class. To score the keywords, the maximum 

value of the normalized MI was calculated across all classes and tasks. The top N keywords, 

according to their score, were then retained for model training. Therefore, the total number 

of keywords in the vocabulary of the MT-CNN model becomes controllable. However, the 

optimal number of N needs to be determined by experiments. Our experiments are intended 

to observe:

1. how the task performance scores and privacy vulnerability vary if the number of 

keywords N changes, and

2. to what extent does the MI approach award the same level of clinical task 

performance and MIA accuracy scores compared to the intersection approach 

with a similar number of keywords in the vocabulary set.

3.5. Study Design

The primary purpose of the study is to assess if the privacy-preserving vocabulary 

selection approaches we introduced in Section 3.4.1 and 3.4.2 are effective means of 

protection against MIAs. We quantified the vulnerability of the MT-CNN models for text 

comprehension of the cancer pathology reports, in which there is a chance of including 

private information. If there is private information in the model, some of those few outliers 
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may drive classification and decision-making, which will increase the chance of successful 

MIAs.

We designed a series of privacy attack experiments toward the models trained by the 

seven cancer registries, where the model (target model) was trained with the data from six 

registries (target model), then the remaining one registry performed MIAs toward the target 

model.

We developed multiple shadow models by random sampling to obtain reliable posterior 

distributions and developed one attack model for each class label. We designed MIAs 

against the cancer main site classification task of the MT-CNN, which consisted of C = 70 

class labels. Consequently, in this study, we

1. Trained a MT-CNN model with the data from six registries. (target model 

Mtarget)

2. Developed 100 shadow models Msℎadow
i , i = 1 … 100, the same MT-CNN model 

architecture with the bootstrap sampled data from the remaining registry.

3. Implemented 70 attack models Mattack
c  with the outputs from the 100 shadow 

models.

4. Performed MIAs with the attack models to the target model.

5. Determined the classification accuracy that the cancer pathology reports being 

identified if it belongs to the training corpus (data from the six registries) of the 

target model or not (the one from the remaining registry).

6. Repeated the experiment seven times.

3.6. Performance Measure

The success of MIAs depends on whether the attack model, Mattack
c , classifies correctly if a 

document (in this context, an e-path report) is included in the training set by observing the 

softmax output of the document from the target model, Mtarget. In other words, the attack 

model is a two-class classifier estimating if a report is inside or outside the training set. This 

study employed simple accuracy as a performance measure, where the chance level is 0.5, 

and the perfect classification equaled 1.0. Note, the number of data samples between the 

training samples inside or outside the training set may not be identical; it depends on the 

number of available samples in the target and attack registries.

Experiments were performed toward the three models; the MT-CNN model with the 

vocabulary of words and tokens appeared at least five times in the corpus (baseline), the 

model with the vocabulary selected by their appearance across multiple cancer registries 

(intersection approach), and the model with vocabulary selected by the utility scores 

determined by the MI (MI approach). Results of the experiments are the quantification 

of privacy vulnerability in terms of the MIAs, as well as the clinical task performance.

Yoon et al. Page 9

Cancer Biomark. Author manuscript; available in PMC 2022 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The clinical task performance scores could be important indicators if trade-offs between the 

task performance and data privacy exist. We employed both micro- and macro-averaged F1 

scores because the tasks possess severe class imbalance. The micro-averaged F1 scores are 

useful if we observe the task performance for each document, whereas the macro-averaged 

F1 scores weigh equally across class labels, thus reflecting impact by the class imbalance.

Note, we are training classifiers of multitask learning mechanisms and processing five tasks, 

resulting in 10 F1 scores; consequently, comparing clinical task performances between the 

models becomes utterly complicated. To mitigate the complication, we introduced averaged 

F1 scores. The averaged F1 scores may not have clinical implication, but they are listed for 

ease of comparison.

3.7. Experiments

The experiments of training MT-CNN models for classifying cancer pathology reports were 

with Keras [32] and TensorFlow [33] backend on the IBM Watson Machine Learning 

toolkits, on the Summit supercomputer at Oak Ridge Leadership Computing Facility 

(OLCF). Training the models in parallel was with the Exascale Computing Projects, cancer 

distributed learning environments (ECP CANDLE) [34].

Training of the models is with the vocabulary sets collected by the two approaches 

elaborated in the sections 3.4.1 and 3.4.2, along with the baseline method, which is the 

current practice of the training that we eliminated the under-represented tokens that are 

appearing less than five times. As a summary, the comparison is with the following 

approaches; baseline, five intersection thresholds Sthreshold = {2,3,4,5,6}, and mutual 

information with the following number of keywords N = {20000,10000,5000,2000}.

4. Results

4.1. Privacy Vulnerability

Table 1 lists the MIA accuracy scores to the MT-CNN models with the vocabulary selection 

approaches, with respect to the number of the shadow models. As it is in accordance with 

[3], the MIA accuracy was increased as we applied more shadow models to the simulation. 

However, the accuracy did not improve if more than 50 shadow models were applied.

From the 70 class labels of site labels, we divided them into their prevalence of data 

samples. The table 1 lists the MIA accuracy separately by their availability of training 

samples, which resulted in higher MIA accuracy toward the class labels that have less than 

100 training samples available, while the MIA accuracy toward the highly prevalent cancer 

types (≥ 10000) was nearly chance level. The observation proved that our hypothesis that 

the overfitting of the DL models could be happening more on the under-represented labels 

so there expected a higher chance of successful MIAs toward the minor classes holds. The 

intersection approach was effective. It reduced the MIA accuracy from 0.578 to 559 for all 

the cancer site labels. The mutual information approach made even lower MIA accuracy to 

0.543 (M10000 model) and 0.523 (M2000 model).
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Figure 1 illustrates several interesting observations from the experiments. We observed that 

the models exposed lower security vulnerability as the algorithm secured vocabularies more 

tightly. On average, the baseline model has a vocabulary of 58,332 words and tokens, 

the I6 models were with 12,529 words, the MI1000 models were with 10,000 words, 

and the MI2000 models were with 2,000 keywords. Overall, the baseline models were 

more vulnerable to the MIA. MI2000 ones were the most secure across the models in the 

experiments. Class labels with fewer training samples were more vulnerable to the MIA. The 

MIA accuracy scores in Figure 1(b) were the highest, which is toward the set of class labels. 

The MIA accuracy scores in Figure 1(e), with the most prevalent class labels, were the 

lowest. The MIA accuracy scores remain stable as we applied more than 50 shadow models 

except for the ones with the least prevalent labels and the most prevalent labels. Presumably, 

the variations in Figure 1(b) were due to the small number of available samples, whereas the 

fluctuations in Figure 1(e) were because of the low MIA accuracy scores. All the models 

scored nearly chance level.

Note that the I2 model recorded higher MIA accuracy than the baseline method even though 

the vocabulary numbers are similar (58,332 vs. 57,860). The baseline model discarded 

the keywords with a frequency less than five, while the I2 model kept some of the 

low-frequency keywords. Those keywords and terms may incur overfitting to the training 

samples in the minority classes, resulted in the MIA success.

4.2. Clinical Task Performance

The clinical task performance scores in F1 metric, as well as the average scores, are shown 

in Table 2. The models with intersection approach recorded the competitive F1 scores with 

the baseline model in micro- and macro-averaged F1 scores. (Micro F1: ~ 0.852–0.855, 

Macro F1: ~ 0.543–0.570). On the contrary, the models with MI approach showed a 

performance decrease if we applied a few keywords. The MI2000 model recorded 0.747 

in the micro-F1 score and 0.413 in the macro F1. Although the MI2000 model was the most 

secure model against the MIA (Table 1), it sacrificed clinical task performance to achieve 

privacy.

Figure 2, which plotted the F-1 scores concerning the number of words and tokens in the 

vocabulary, visualizes the trend of the task performance scores. Overall, the intersection 

approaches hold the same accuracy scores as the scores from the baseline model. Variability 

across the intersection-based models was observed to some extent, but it is not evident that 

it is subject to the size of vocabularies. On the contrary, the F-1 scores dropped drastically if 

the vocabulary size smaller than 10,000.

5 Discussion

The MIA with multiple shadow models is based on the following two assumptions. Firstly, 

the adversary learns about the target model architecture and hyperparameters to train. The 

idea is that the adversary can develop multiple shadow models that mimic the target model's 

behavior, thus estimate the posterior distribution and identify whether it is the output from 

the samples included in the training corpus or samples that have never been exposed to the 

model before. A hint of target model architecture and its hyperparameters may be from the 
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relevant research papers from the developers, but not thoroughly. Secondly, the adversary 

should have a good volume of quality data samples to train the faithful shadow models 

to mimic the target model. Such abundant data may not be easily acquired for biomedical 

informatics.

The MIA settings and data in this study would be the best-case scenario for attackers 

(and the worst-case for the cancer registries). In this study, the adversary knows the model 

architecture very well, possessed the real-world cancer data samples to develop shadow 

models, and gain access to HPC resources to develop many shadow models in parallel. 

For those reasons, the MIA accuracy scores reported by the experiments may not measure 

the real-world threat in the field but quantified the relative privacy vulnerability across the 

models with various vocabulary selection strategies.

5.1. Privacy Vulnerability

The easiest way to avoid privacy threats with MIA toward the DL models is to increase 

the volume of the training data corpus. As shown in Table 1, the MIA accuracy went down 

drastically to the class labels trained by many cancer pathology reports. However, increasing 

the size of the training corpus is not always trivial for some domains and tasks. Biomedical 

and clinical data is one of them. Especially if the tasks are for rare diseases and the data 

samples are not easily augmented or simulated, such as clinical text data, there will be only a 

limited volume of the training corpus.

Curation of the keywords in the vocabulary of the DL models helps reduce the privacy 

threats. We showed that the critical factor of the successful MIA attacks could be due 

to the overfitting of the DL models. The way to avoid such phenomena is by collecting 

a vocabulary set with informative keywords for the clinical tasks and training the DL 

models with it. In this paper, we proposed the two approaches; intersection and mutual 

information. The MIA accuracy scores reported in Table 1 and the illustration of the 

accuracy trend in Figure 1 demonstrated that the proposed approaches effectively reduced 

privacy vulnerability.

5.2. Task Performance

Securing data and persons' identity in training corpus often decreases the task performance 

of the DL models, many of which are inevitable. This study also observed that the most 

secure model (MI2000 model) recorded the lowest clinical task performance (Baseline: 

0.853/0.555, MI2000: 0.747/0.413). The degradation was more severe to the macro-averaged 

F1 scores, a hint that the reduction of keywords could affect more to the under-represented 

class labels.

Performance decrease may not be tolerable to some tasks, such as mission-critical tasks. The 

intersection approach effectively positions the vocabulary set to achieve privacy-preserving 

DL model training while maintaining the clinical task performance (Baseline: 0.853/0.555, 

Intersection6: 0.855/0.562). The vocabulary size of 12,529 seems optimal to the mutual 

information approach also. The only disadvantage of the intersection approach is that it 

requires multiple data providers. In this study, it was achieved by the support of multiple 

cancer registries. However, such luxury is not always available.
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The mutual information approach is also effective and flexible. With the proper choice 

of the vocabulary size, N, we can control the trade-offs between data security and task 

performance. A disadvantage is, this approach may require a series of trials to choose the 

optimal threshold.

Eliminating non-informative keywords and terms gives us another benefit that we can 

conserve computing resources. In the DL models for processing natural language text, 

the majority of the memory is consumed by the word or token embedding matrix. By 

downselecting the informative keywords in the vocabulary, it implies the DL model can 

allocate less memory for the embedding layer, spend less time to update the embedding 

vectors, thus making more compact models while maintaining task performance.

6 Conclusions

This paper has identified a potential threat of privacy vulnerability via membership 

identification. Such a threat could be critical to the DL models trained by the clinical 

reports that may contain PHI and PII. We hypothesized that the membership identification 

is from the characteristic of DL model training that it determines the optimal features to 

maximize the accuracy. We developed a simulation of MIA to the MT-CNN for clinical 

text classification, with the cancer pathology reports from the participating cancer registries, 

which quantifies the privacy vulnerability toward the target model.

Our solution to the problem is the optimal selection of informative features. We proposed 

two approaches: intersection and mutual information. The former method takes keywords 

and tokens that appear across multiple cancer registries, based on the assumption that if the 

words are used by multiple registries, those common words are key components that define 

the report. The latter method is based on the utility score of the terms and tokens, which 

we quantified as mutual information in the study. Our study demonstrated that the proposed 

approaches decreased privacy vulnerability and maintained clinical task performance.
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Figure 1. 
Average MIA accuracy scores toward the MT-CNN models with vocabulary of baseline 

(circle), keywords appearing all six registries (I6, square), 10,000 keywords of highest 

mutual information (MI10000, diamond), and 2,000 keywords of highest mutual information 

(MI2000, triangle) across (a) all the attack models, (b) attack models to the class labels with 

average training samples < 100, (c) ≥ 100 and < 1000, (d) ≥ 1000 and < 10000, (e) ≥ 10000.
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Figure 2. 
Average of clinical task performance scores both in (a) micro-averaged and (b) macro-

averaged F-1 scores. We averaged all five information extraction tasks of site, subsite, 

laterality, histology, and behavior.
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Table 1:

Privacy vulnerability quantified by the accuracy scores of the MIAs. The MIA is binary decision, where 1.0 is 

the perfect identification, and 0.5 is the chance level. In the column index, B is toward the baseline model, I2, 

I3, I4, I5, I6 is to the models with Sthreshold = {2,3,4,5,6}, and MI to the models with the vocabulary selected 

by the higher mutual information. The numbers 1, 10, 20, 40, 60, 80, and 100 on the left column indicates 

the number of shadow models applied to the MIAs. For the deeper understanding from the experiments, we 

divided the attacks toward the class labels that have available number of average training samples of < 100, ≥ 

100 and < 1000, ≥ 1000 and < 10000, and ≥ 10000.

Intersection Mutual Information

B I2 I3 I4 I5 I6 MI MI MI MI

# 58322 57860 35396 25026 18274 12529 20000 10000 5000 2000

All

1 0.560 0.587 0.559 0.538 0.543 0.542 0.548 0.530 0.532 0.513

10 0.571 0.605 0.572 0.547 0.557 0.554 0.561 0.539 0.537 0.520

20 0.574 0.607 0.576 0.551 0.562 0.557 0.562 0.543 0.541 0.523

40 0.577 0.608 0.578 0.554 0.559 0.560 0.563 0.543 0.541 0.523

60 0.579 0.611 0.577 0.555 0.560 0.559 0.564 0.544 0.543 0.525

80 0.578 0.611 0.578 0.555 0.561 0.557 0.563 0.543 0.541 0.524

100 0.578 0.610 0.579 0.554 0.560 0.559 0.564 0.543 0.542 0.523

<100

1 0.623 0.692 0.593 0.586 0.584 0.593 0.621 0.567 0.594 0.555

10 0.651 0.721 0.644 0.639 0.643 0.637 0.681 0.607 0.595 0.567

20 0.666 0.747 0.682 0.642 0.667 0.651 0.675 0.642 0.630 0.593

40 0.687 0.755 0.689 0.660 0.639 0.668 0.676 0.633 0.624 0.591

60 0.693 0.785 0.694 0.674 0.639 0.641 0.681 0.615 0.629 0.608

80 0.695 0.752 0.682 0.674 0.662 0.638 0.664 0.620 0.623 0.614

100 0.670 0.762 0.681 0.659 0.641 0.650 0.659 0.627 0.631 0.590

>=100 and <1000

1 0.571 0.601 0.571 0.545 0.549 0.549 0.556 0.535 0.532 0.514

10 0.581 0.616 0.578 0.548 0.558 0.556 0.565 0.537 0.539 0.519

20 0.581 0.617 0.581 0.550 0.563 0.562 0.564 0.541 0.539 0.518

40 0.586 0.620 0.585 0.553 0.566 0.564 0.566 0.542 0.543 0.519

60 0.585 0.620 0.584 0.552 0.565 0.567 0.567 0.544 0.544 0.520

80 0.585 0.623 0.584 0.553 0.566 0.563 0.570 0.543 0.541 0.519

100 0.585 0.622 0.587 0.553 0.567 0.561 0.569 0.542 0.542 0.521

>=1000 and <10000

1 0.536 0.555 0.538 0.521 0.526 0.525 0.528 0.516 0.515 0.506

10 0.542 0.561 0.543 0.525 0.531 0.530 0.532 0.519 0.516 0.508

20 0.543 0.561 0.545 0.527 0.532 0.530 0.534 0.520 0.518 0.508

40 0.544 0.561 0.545 0.529 0.530 0.531 0.533 0.520 0.516 0.509

60 0.545 0.560 0.543 0.527 0.532 0.531 0.533 0.521 0.517 0.509
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Intersection Mutual Information

B I2 I3 I4 I5 I6 MI MI MI MI

# 58322 57860 35396 25026 18274 12529 20000 10000 5000 2000

80 0.544 0.562 0.543 0.529 0.531 0.532 0.533 0.521 0.518 0.508

100 0.545 0.563 0.544 0.529 0.530 0.528 0.533 0.522 0.517 0.507

>=10000

1 0.515 0.511 0.517 0.513 0.511 0.512 0.528 0.516 0.515 0.506

10 0.518 0.518 0.517 0.511 0.513 0.513 0.532 0.519 0.516 0.508

20 0.518 0.519 0.518 0.516 0.515 0.515 0.534 0.520 0.518 0.508

40 0.518 0.521 0.518 0.514 0.515 0.516 0.533 0.520 0.516 0.509

60 0.520 0.520 0.518 0.514 0.513 0.516 0.533 0.521 0.517 0.509

80 0.519 0.520 0.517 0.514 0.515 0.513 0.533 0.521 0.518 0.508

100 0.518 0.520 0.518 0.515 0.516 0.519 0.533 0.522 0.517 0.507
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Table 2:

Clinical task performance scores in micro- and macro-average F1 scores of the five information extraction 

tasks; site, subsite, laterality, histology, and behavior. The R on the left column denotes the attack registry 

that the data reserved for performing MIAs, A is the approaches; B(baseline), I2, I3, I4, I5, I6 for Sthreshold, 

and MI, # denotes the number of keywords in the vocabulary of the MT-CNN classifier. The μ on the 

last row is the numerical average across the above rows. Note that the Average on the right column is the 

numerical average of micro- and macro-F1 scores of all five tasks. Those quantities may not carry any clinical 

implication, but we introduced this for easier reading and comparison between models.

Site Subsite Laterality Histology Behavior Average

R A # Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

1

B 63121 0.925 0.690 0.683 0.360 0.914 0.528 0.778 0.352 0.974 0.860 0.855 0.558

I2 62732 0.926 0.701 0.683 0.354 0.917 0.533 0.782 0.368 0.975 0.910 0.856 0.573

I3 38519 0.926 0.691 0.683 0.342 0.915 0.501 0.778 0.336 0.975 0.912 0.855 0.556

I4 27411 0.926 0.696 0.681 0.354 0.915 0.522 0.779 0.342 0.973 0.884 0.855 0.560

I5 20201 0.926 0.704 0.683 0.355 0.918 0.537 0.781 0.340 0.974 0.909 0.856 0.569

I6 14088 0.927 0.698 0.683 0.347 0.915 0.532 0.781 0.356 0.975 0.910 0.856 0.569

MI 20000 0.924 0.697 0.683 0.346 0.917 0.548 0.782 0.347 0.975 0.913 0.856 0.570

MI 10000 0.924 0.677 0.642 0.344 0.912 0.516 0.770 0.330 0.972 0.896 0.844 0.553

MI 5000 0.916 0.664 0.592 0.321 0.907 0.493 0.754 0.320 0.963 0.848 0.827 0.529

MI 2000 0.889 0.591 0.533 0.221 0.691 0.257 0.719 0.258 0.922 0.749 0.751 0.415

2

B 52495 0.919 0.659 0.658 0.308 0.911 0.491 0.770 0.303 0.976 0.855 0.847 0.523

I2 51993 0.919 0.682 0.667 0.362 0.911 0.509 0.773 0.399 0.973 0.860 0.849 0.562

I3 32310 0.920 0.658 0.661 0.300 0.912 0.504 0.768 0.307 0.976 0.818 0.847 0.517

I4 23151 0.919 0.653 0.656 0.307 0.913 0.513 0.767 0.302 0.975 0.851 0.846 0.525

I5 17105 0.923 0.679 0.669 0.340 0.913 0.519 0.774 0.386 0.977 0.884 0.851 0.562

I6 11876 0.922 0.684 0.669 0.345 0.913 0.502 0.774 0.372 0.977 0.870 0.851 0.555

MI 20000 0.917 0.653 0.652 0.301 0.912 0.520 0.768 0.299 0.975 0.852 0.845 0.525

MI 10000 0.917 0.648 0.627 0.298 0.911 0.483 0.768 0.289 0.975 0.856 0.839 0.515

MI 5000 0.909 0.641 0.583 0.283 0.898 0.490 0.743 0.287 0.961 0.781 0.819 0.497

MI 2000 0.881 0.592 0.533 0.232 0.689 0.276 0.704 0.277 0.926 0.743 0.747 0.424

3

B 61834 0.925 0.688 0.678 0.348 0.913 0.522 0.778 0.362 0.976 0.892 0.854 0.562

I2 61492 0.926 0.686 0.681 0.350 0.914 0.530 0.780 0.374 0.976 0.907 0.855 0.569

I3 37650 0.925 0.681 0.680 0.345 0.915 0.541 0.781 0.339 0.976 0.903 0.855 0.562

I4 26470 0.922 0.640 0.665 0.293 0.914 0.500 0.768 0.247 0.976 0.886 0.849 0.513

I5 19046 0.925 0.683 0.680 0.335 0.915 0.520 0.779 0.346 0.974 0.897 0.855 0.556

I6 12734 0.925 0.676 0.679 0.355 0.914 0.543 0.782 0.351 0.976 0.910 0.855 0.567

MI 20000 0.926 0.682 0.680 0.349 0.914 0.523 0.780 0.368 0.975 0.902 0.855 0.565

MI 10000 0.924 0.674 0.643 0.325 0.910 0.514 0.772 0.297 0.975 0.863 0.845 0.535

MI 5000 0.915 0.654 0.597 0.297 0.905 0.499 0.748 0.307 0.963 0.835 0.826 0.518

MI 2000 0.889 0.584 0.536 0.249 0.696 0.303 0.717 0.288 0.920 0.741 0.752 0.433

4 B 62129 0.924 0.672 0.675 0.343 0.915 0.524 0.777 0.358 0.976 0.902 0.853 0.560
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Site Subsite Laterality Histology Behavior Average

R A # Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

I2 61711 0.924 0.671 0.677 0.360 0.914 0.537 0.779 0.376 0.976 0.923 0.854 0.574

I3 37678 0.924 0.674 0.677 0.355 0.913 0.531 0.777 0.375 0.975 0.915 0.853 0.570

I4 26610 0.924 0.680 0.675 0.332 0.914 0.527 0.774 0.342 0.975 0.903 0.853 0.557

I5 19335 0.925 0.673 0.674 0.349 0.917 0.530 0.779 0.378 0.977 0.916 0.854 0.569

I6 13065 0.925 0.671 0.678 0.350 0.917 0.534 0.777 0.351 0.977 0.905 0.855 0.562

MI 20000 0.924 0.684 0.679 0.361 0.915 0.524 0.780 0.378 0.977 0.910 0.855 0.571

MI 10000 0.924 0.677 0.643 0.350 0.910 0.527 0.771 0.357 0.976 0.901 0.845 0.562

MI 5000 0.916 0.644 0.599 0.302 0.907 0.503 0.749 0.316 0.967 0.858 0.827 0.525

MI 2000 0.892 0.593 0.546 0.223 0.699 0.326 0.714 0.243 0.924 0.754 0.755 0.428

5

B 55644 0.928 0.673 0.683 0.350 0.915 0.540 0.780 0.354 0.974 0.887 0.856 0.561

I2 54366 0.926 0.679 0.686 0.371 0.913 0.538 0.781 0.376 0.973 0.914 0.856 0.575

I3 33098 0.927 0.670 0.683 0.362 0.915 0.544 0.781 0.388 0.971 0.895 0.856 0.572

I4 23393 0.928 0.677 0.684 0.344 0.915 0.545 0.783 0.374 0.975 0.929 0.857 0.574

I5 17200 0.929 0.679 0.679 0.343 0.914 0.533 0.780 0.356 0.975 0.909 0.855 0.564

I6 11898 0.928 0.677 0.681 0.349 0.916 0.531 0.778 0.334 0.973 0.924 0.855 0.563

MI 20000 0.928 0.681 0.682 0.383 0.915 0.546 0.784 0.392 0.974 0.907 0.857 0.582

MI 10000 0.927 0.671 0.640 0.312 0.911 0.528 0.773 0.302 0.974 0.900 0.845 0.543

MI 5000 0.914 0.634 0.594 0.288 0.903 0.503 0.749 0.259 0.964 0.810 0.825 0.499

MI 2000 0.882 0.572 0.521 0.219 0.690 0.292 0.704 0.262 0.915 0.734 0.742 0.416

6

B 58310 0.926 0.685 0.681 0.348 0.913 0.521 0.777 0.340 0.975 0.894 0.854 0.557

I2 57998 0.923 0.682 0.679 0.358 0.911 0.541 0.777 0.388 0.972 0.889 0.852 0.572

I3 34846 0.924 0.675 0.681 0.359 0.912 0.540 0.779 0.377 0.974 0.917 0.854 0.574

I4 24308 0.927 0.690 0.683 0.354 0.915 0.540 0.780 0.356 0.975 0.892 0.856 0.566

I5 17623 0.926 0.678 0.680 0.342 0.915 0.529 0.776 0.325 0.976 0.916 0.854 0.558

I6 12086 0.926 0.677 0.677 0.359 0.914 0.530 0.778 0.350 0.974 0.897 0.854 0.563

MI 20000 0.925 0.709 0.681 0.372 0.913 0.531 0.779 0.377 0.974 0.885 0.855 0.575

MI 10000 0.923 0.667 0.628 0.321 0.912 0.517 0.770 0.295 0.973 0.904 0.841 0.541

MI 5000 0.914 0.658 0.589 0.299 0.902 0.511 0.751 0.307 0.960 0.830 0.823 0.521

MI 2000 0.883 0.559 0.523 0.217 0.692 0.309 0.700 0.215 0.914 0.732 0.742 0.406

7

B 54724 0.924 0.675 0.679 0.350 0.916 0.540 0.781 0.365 0.974 0.898 0.855 0.566

I2 54728 0.926 0.686 0.678 0.363 0.919 0.531 0.783 0.353 0.975 0.903 0.856 0.567

I3 33673 0.923 0.657 0.674 0.327 0.917 0.515 0.778 0.300 0.975 0.892 0.853 0.538

I4 23841 0.918 0.630 0.659 0.282 0.916 0.507 0.765 0.232 0.976 0.890 0.847 0.508

I5 17409 0.920 0.632 0.656 0.279 0.913 0.483 0.771 0.246 0.975 0.853 0.847 0.498

I6 11956 0.925 0.676 0.682 0.349 0.917 0.541 0.783 0.336 0.976 0.893 0.856 0.559

MI 20000 0.918 0.633 0.652 0.281 0.915 0.508 0.769 0.239 0.970 0.813 0.844 0.495

MI 10000 0.923 0.687 0.644 0.353 0.916 0.525 0.776 0.350 0.971 0.865 0.846 0.556

MI 5000 0.914 0.660 0.593 0.313 0.908 0.516 0.751 0.318 0.964 0.811 0.826 0.523

MI 2000 0.877 0.541 0.517 0.182 0.696 0.307 0.695 0.176 0.921 0.653 0.741 0.372

μ B 58322 0.924 0.678 0.677 0.344 0.914 0.524 0.777 0.348 0.975 0.884 0.853 0.555
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Site Subsite Laterality Histology Behavior Average

R A # Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

I2 57860 0.924 0.684 0.679 0.360 0.914 0.531 0.779 0.376 0.974 0.901 0.854 0.570

I3 35396 0.924 0.672 0.677 0.341 0.914 0.525 0.778 0.346 0.975 0.893 0.853 0.556

I4 25026 0.923 0.666 0.672 0.324 0.915 0.522 0.774 0.313 0.975 0.891 0.852 0.543

I5 18274 0.925 0.675 0.674 0.335 0.915 0.522 0.777 0.340 0.975 0.898 0.853 0.554

I6 12529 0.925 0.680 0.678 0.351 0.915 0.530 0.779 0.350 0.975 0.901 0.855 0.562

MI 20000 0.923 0.677 0.673 0.342 0.914 0.529 0.778 0.343 0.974 0.883 0.852 0.555

MI 10000 0.923 0.671 0.638 0.329 0.912 0.516 0.771 0.317 0.974 0.884 0.844 0.543

MI 5000 0.914 0.651 0.592 0.300 0.904 0.502 0.749 0.302 0.963 0.825 0.825 0.516

MI 2000 0.885 0.576 0.530 0.220 0.693 0.296 0.708 0.245 0.920 0.729 0.747 0.413
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